Valid partitions
Practice
4.4 (14 votes)
Algorithms
Basics of string manipulation
Math basic
Modulus arithmetic
Math
Number theory
Problem
84% Success 4337 Attempts 10 Points 5s Time Limit 256MB Memory 1024 KB Max Code
You are given a string \(S\) and an integer \(K\). Print the valid partition of the string. A valid partition for a provided \(S\) and \(K\) satisfies the following properties:
- There exist strings \(s_1,s_2, ...,s_m\) where \(m \geq K\) such that \(s_1+s_2.....+s_m = S\) where \(+\) is the concatenation operator for strings.
- If \(1 \leq i \leq m-1\), then \(length(s_i) = K \).
- If \( i = m\), then \(K-1 \leq length(s_i) \leq K \).
If a valid partition is not possible, then print -1.
Print the strings \(s_1,s_2...,s_m\) in the partitions that are separated by '\(-\)'.
Input format
- First line: \(t\) denoting the number of test cases
- Next \(t\) lines: Space-separated string \(S\) and an integer \(K\)
Output format
For each test case, print a single line containing the valid partition.
Constraints
\(1 \leq t \leq 10\)
\(2 \leq |S| \leq 1000 \) where \(|S|\) is the length of string
\(1 \leq K \leq 30\)
Submissions
Please login to view your submissions
Similar Problems
Points:10
3 votes
Tags:
Very-Easy
Points:10
57 votes
Tags:
MathematicsModulus ArithmeticMathNumber Theory
Points:10
2 votes
Tags:
Very-Easy
Editorial